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Abstract--Modeling of biotransport 
phenomena inside human body has being 
paid attentions for last 50 years. Most of 
mathematical model only consider energy 
conservation which is bioheat. However in 
biosystems, the heat and chemical 
compositions with mas and momentum are 
coupled. In this research, due to the 
complexity of tissue structure, especially with 
Trans-vascular Blood Perfusion we 
rigorously derive and present a volume-
averaged mathematical model which covers 
complete conservations of mass, momentum, 
energy and compositions. The model can be 
considered as a fundamental and general 
biotransport model used in any biosystems. 

Keywords – Biotransport, Conservation 
equation, Bioheat, Biosystem, Biophysics, 
Mathematical modeling, Volume averaging, 
Interfacial transfer 

I. INTRODUCTION 
 
In biological and physiological systems, it is 

extremely important to measure, monitor, and 
predict temperature distribution, metabolic heat 
generation, diffusive behaviors (heat conduction 
and mass diffusion), velocity distribution and 
convective arterial-venous blood flows, 
perfusion in tortuous capillary flows, 
distributions of mass concentration of 
compositions etc. within human body. All of 
these desired quantities of the transport 
phenomenon (abbreviated as biotransport), 
defined as the total conservations of mass, 
momentum, energy, and mass compositions. It 
is desirable to have an accurate biotransport 
model which can help determine these 
biotransport quantities in human systems for 
translational research, clinical trials, medical 
therapies, and other patient-oriented healthcare 

services. For example, bioheat transfer model as 
a component of biotransport model is the basis 
of thermotherapy (hyperthermia), 
thermoregulations, cryosurgery, thermal 
ablation, thermography for diagnostics etc. 

However, due to its biological complexity 
and nature dynamic behaviors, it is very difficult 
to predict, model and simulate the transport 
phenomena in biological and physiological 
systems on a microscopic scale due to its 
complexities of human tissue architecture 
(especially heterogeneity and anisotropy) and 
physiological physics (especially interactions 
between different media). In general, transport 
phenomena include the convection of micro-
fluid flow, perfusion of arterial-venous blood in 
the tubes or through tortuous capillary structures, 
various diffusions due to molecular interaction, 
interfacial transfer (exchanges) between 
different bio-structures or bio-media, and 
interactions with external environment (such as 
gravitation, heat radiation, electromagnetic 
forces, or other possible external forces, 
convections to the existing environment etc.). A 
general model of biotransport should be 
developed in terms of the conservations of 
averaged mass, momentum, energy, and species 
mass. Therefore, a consistent model of 
biotransport should compose of bioheat, 
biomass, and bioconvection models [1]. The 
bioheat model is used to account for heat 
transfer in biological systems or tissues. It 
requires consider many important factors such 
as heat conduction in the tissue, heat convection 
and perfusion of the blood, heat storage capacity 
within the blood and tissue, metabolic heat 
generation, thermal and anatomical properties of 
selected organs and targeted tissues, geometries 
of tissue architecture, morphology and topology 
of blood vessels, their possible interactions with 
the environment etc. [2]. The heterogeneity of 
the tissue architecture and tortuosity of vessels 
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are the important features to be considered for 
the modeling implementation. The biomass 
model is used for analyzing mass transfer of 
multi compositions, and bioconvection is 
introduced to take the consideration of any 
possible micro-fluid convection in biological 
systems such as tissues.  

Such models and pertinent work can be 
found in many literatures and remarkable 
investigations. However, there still lacks of 
consistent and generic model which is 
rigorously derived. 

A pioneer work in modeling bioheat 
transfer in tissues was landmarked by Harry 
Pennes [3] who proposed to contain two heat 
sources: produced by tissue metabolism and 
transferred by blood perfusion of vascular 
arterioles. It was the first time to incorporate 
perfusion heat source into the bioheat equation 
for analysis of temperature distribution in 
human resting farearm [4,5]. The model has 
been used in many biomedical applications and 
biomedical research. It is the basis for human 
thermotherapy (hyperthermia) (such as thermal 
therapy for prostate cancer [6] and the human 
thermoregulation [7]. 
 
II. TRANSPORT THEORIES AND MICROSCOPIC 
 

In many multiphase studies, the medium 
commonly refers to a phase, saying solid, liquid, 
or gas. However, in biological systems, a 
medium k can be referred to different biological 
media (subjects) such as veins, micro-blood-
fluid (liquid) in veins or arteries, air and gases 
(gas), bones (solid), interstitial fluid flow in 
extravascular architecture (liquid), 
interventional dispersed particles such as 
nanoparticles (solid), fat, etc. People can also 
classify human biological media of tissues into 
cells, vasculatures (intra- or extravascular 
architecture) such as arterial vessels and veins, 
etc. In computational oncology models, people 
classify media representing cancer tumor as 
cancer cells, normal and malignant cells and 
interstitial vascular spaces. 
 
III. MICROSCOPIC BIOTRANSPORT EQUATIONS 

 

A microscopic biotransport model with 
average mass, momentum, energy, and mass 
centration of composition conservations for a 

microscopic biological medium k  can be 
expressed in a general form as  
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where k is a generic transport quantity or 
variable of biological medium k at microscopic 
scale. k is selected microscopic medium‟s 
density, kv


is the velocity due to the medium 

movement or convection, 


kF


is the total 
associated transfer flexes, and 



k
S is the 

corresponding accumulated sources imposed on 
the biological system. k can be refer to 1 for 
microscopic mass conservation, microscopic 
medium kv


for microscopic momentum 

conservation, microscopic medium enthalpy kh
for microscopic energy conservation, and mass 
concentration of compositions

kiC ,
(i=1,2,3,…N) 

or microscopic mass concentration 
conservations, respectively.  The derivation can 
be found in [8] when the authors developed a 
model for multi-phase model for the transport 
during solidification processing. 
 
IV. MICROSCOPIC MEDIUM IDENTIFICATION 

 
Microscopically, the index k refers to a 

single physical medium (or subject), For 
example, viscous blood fluid in either arterials 
or veins, cells, air flow in airways, tissue 
architectures, gas in colons, fluid in interstitial 
space, bone, etc. Therefore, the above 
biotransport model with multiple conservations 
can be applied to these individual medium. As 
all known, the complexity of tissue architecture 
and heterogeneity and anisotropy of vascular 
architectures make it very difficult to describe 
the geometries and topologies of the boundaries 
between these identified medium on 
microscopic scale. The macroscopic description 
of the tissues and relevant biological factors 
such as perfusion and heat generations is 
necessary. In the macroscopic description, the 
concept of medium can be referred to not only 
pure substance like blood, but also mixed media. 
In analogous of the modeling in multiphase 
flows where the medium index refers to 
individual physical phase (either solid, or liquid, 
or gas), people can develop a multi-medium 
model (as a multi-medium treatment, coined by 
Roetzei and Xuan [2] for describing and 
modeling such complex and hybrid tissue 
systems. Since the Pennes‟s bioheat equation, 
many studies demonstrated the success of such 
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consideration to obtain a generic model of 
bioheat. In their remarkable works, the medium 
index and their physical meaning can be 
summarized as follows.  
 

V. MACROSCOPIC MEDIUM IDENTIFICATION 
 
On a macroscopic scale, human biological 
tissues can be classified into vascular region and 
extravascular regions [9]. The vascular region 
contains blood vessels (arteries or veins) and 
extravascular region contains tissue cells and 
interstitium that composes of extravascular 
matrix and interstitial fluid. In this classification, 
the subscript of biological medium index k can 
be v and e. In this way, the blood flow can be 
considered as an infiltrated flow in a saturated 
porous media (extravascular structure) as in [9].  

One can classify three regions: bone (solid), 
vascular and extravascular regions. In this way 
the medium index k can be b, v, and e, 
respectively. 

If there is no bone, one can has two media 
identifications. It should be noted that in the 
vascular region, both arteries and veins are be 
considered as hybrid medium. In order to 
account for the countercurrent heat exchange, 
the arterials and veins distinction should be 
identified. Under this consideration, one can 
classify the biological media into b, ar, ve, and e, 
media respectively. One can also identify media 
into bone, vascular region, cells, and 
extravascular matrix. If there is no bone, it can 
be three media: vascular region, cells, and 
intersititial space with intersititial fluid. 

Similarly, in order to identify the interstitial 
fluid within the extravascular region, one can 
also classify biological media into b, ar, ve, cell, 
and f. It should be noted that more number of 
identified media, more equations of 
conservations being appeared in the model, 
which raise high computational complexity and 
requires intensive computations, although the 
physical descriptions becomes clearer. There is 
no unique medium identification. It depends on 
the objective of the model and simulation and 
availability of biological or biomedical data or 
parameters to be input and/or studied 

 

Figure 1 Representative elementary volume (REV) or 

control volume of human tissues with (a) vessels 

(arterials), extravascular regions (bone, cells, and 

intersititium); or (b) vessels (veins), extravascular 

regions (bone, cells, and intersititium) for countercurrent 

heat exchange 

 

 
  

Figure 2 Different medium identification of human 

biological tissues within a REV: (a) two media: vessels 

(arteries) and extravascular region (k=v and e, i.e., ); (b) 

three media: vessels (arteries) , cells, and intersititium 

(i.e., k=v, c, and in). 

 

The common medium identifications can be 
summarized in Table 1. 
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Table 1 Medium Identification in Bioheat Models 
No. of 

Media to be 

Modeled 

Physical Meaning 

of the Media 

Medium 

Index k* 
Components Treatment Reference 

One-medium 
Extravascular 

mixture (tissue) 
e (or s) 

Bone, cells, intersititial 
space (extravascular 

matrix) 

As a soft-solid medium with heat 

exchange from arterial perfusion 
[3] 

 

One-medium 
Extravascular 

mixture (tissue) 
e (or s) 

Bone, cells, intersititial 
space (extravascular 

matrix) 

As a soft-solid medium with heat 

exchange from arterial perfusion 
[10,11,12] 

      

One-medium Hybrid (mixed)  m=v+e 

Blood, bones, cell, 

intersititial space 

(extravascular matrix) 

As mixture of single medium [13] 

      

One-medium 

Arterial vascular a Arteries 
As a blood-fluid penetrated in 
porous media 

[14] 
Veins (blood) v Veins 

As a blood-fluid penetrated in 

porous media 

Extravascular 

mixture (tissue) 
e (or s) 

Bone, cells, intersititial 
space (extravascular 

matrix) 

As a soft-solid medium with heat 

exchange from arterial perfusion 

 

Two-media 

Vascular mixture 
(blood) 

v (or b) 
Combined Arteries 
and/or Veins 

As a fluid penetrated in porous 
media 

[9] 
 Extravascular 

mixture (tissue) 
e (or s) 

Bone, cells, intersititial 

space (extravascular 
matrix) 

As solid porous matrix 

 

Two-media 

Vascular mixture 

(blood) 
v (or b) 

Combined Arteries 

and/or Veins 

As a fluid penetrated in porous 

media 

[2] 
Extravascular 

mixture (tissue) 
e (or s) 

Bone, cells, intersititial 
space (extravascular 

matrix) 

As solid porous matrix 

      

Three-media 

Arterial vascular a Arteries 
As a blood-fluid penetrated in 
porous media 

[15] 
Veins (blood) v Veins 

As a blood-fluid penetrated in 

porous media 

Extravascular 

mixture (tissue) 
e (or s) 

Bone, cells, intersititial 
space (extravascular 

matrix) 

As a soft-solid medium with heat 
exchange from arterial and 

venues perfusion 

 

Three-media 

Arteries (blood) a Arteries 
As a blood-fluid penetrated in 
porous media 

[2] 
Veins (blood) v Veins 

As a blood-fluid penetrated in 

porous media 

Extravascular 

mixture (tissue) 
e (or s) 

Bone, cells, intersititial 
space (extravascular 

matrix) 

As soft-solid tissue as porous 

matrix 

 

Three-media 

Arteries (blood) a Arteries 
As a blood-fluid penetrated in 
porous media 

[9] 

 

Veins (blood) v Veins 
As a blood-fluid penetrated in 

porous media 

Extravascular 

mixture (tissue) 
e (or s) 

Bone, cells, intersititial 
space (extravascular 

matrix) 

As soft-solid tissue as porous 

matrix 

* Note: Expressed in our notations 
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VI. MICROSCOPIC CONSERVATIONS OF MASS, 
MOMENTUM, ENERGY, MASS CONCENTRATIONS 

 
For 1k , 01 

kk FF


, and m

kk SS 

(mass source per unit volume, or volumetric 
mass generation), the equation reduces to mass 
conservation equation as 

m

kkk
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t
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In the tissue, either blood flow or interstitial 
fluid flow can be considered as incompressible, 
viscous medium and their densities don‟t vary. 
However, the biotransport equation is applied to 
gas, say, in airway ventilation or airflow in the 
study of pulmonary disease, the density of air 
cannot be assumed as constant. It changes with 
the volume and pressure in the airways. 
Therefore, the variation of density change 
should be considered and the above mass 
conservation equation in the fluid flow model in 
biotransport should be incorporated in the 
biotransport model. 

For kk v


 , IpF k

v

k  


(general 
stress), and 

k

v

kk bSS  (acceleration per unit 
volume, or volumetric force), the microscopic 
general transport equation reduces to 
momentum conservation equation as  

k

v
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where kv


 is the velocity of medium k,
IpF k

vv

k  


is the general stress in terms of 
pressure and share stress, and kb


is the external 

force per unit volume, including gravitation. 
This is the equation to account for any micro-
fluid flows such as vascular blood flow in 
vessels, penetration in the interstitial structures, 
and air flow in respiratory systems. 
Mathematically it yields the Navies-Stocks‟ 
equation for fluid flows. 

 For kk h , 
h

kk qF



 and q

kk SS 

 
(heat 

source per unit volume, also called volumetric 
heat source), the microscopic general transport 
equation reduces to energy conservation 
equation as 

q
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This equation is the bioheat equation in terms of 
enthalpy. One can easily reduce this equation to 
the one in terms of temperature by employing 

the relationships between enthalpy and 
temperature. 

For 
kik C , , j

kik jF ,


  and 

j

kik SS ,

(mass concentration source per unit volume, 
also called volumetric mass concentration 
source), the microscopic general transport 
equation reduces to mass conservation mass 
equation as  

j
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j
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This equation is biomass equation in terms 

of mass concentration of i component, Ci,k. The 

detailed derivation of microscopic transport 

equations can be found in Bird et al (2002). The 

summary of Microscopic conservation equations 

is given in Table 2. 
As all know, due to the complexities of 

tissue anatomic structure, biological medium‟s 
heterogeneity and anisotropy, the coupling of 
many biophysical phenomena, physiological 
responses, it is extremely difficult to solve these 
equations on a microscopic scale. The accurate 
anatomic information on the geometries of 
boundaries between physical media (such as 
microscopic interfaces of blood vessels, surfaces 
of bone, cells distributions, interstitial 
extravascular structures, etc.) should be 
precisely given. The transport exchange 
between different media should be accurately 
depicted. Such modeling becomes very 
complicated and its computing is very intensive 
with high computational complexity. 

Alternatively, people have been developing 
macroscopic model which considers an 
interesting medium modeling as an artificial 
hybrid of multiple physical media. Such 
paradigm can be implicitly seen in [3] that has 
been widely used in either 
biomedical/biomechanical research or clinical 
applications. 

In the past, many bioheat models [4,5,14,15], 
were proposed without theoretical derivations. 
 

VII. VOLUME AVERAGING TECHNIQUES AND 

THEORIES 
 

The successes of using the volume 
averaging techniques (VAT) widely-used in 
many multi-phase or porous media systems 
inspirited its applications to model complex 
human biological systems. Many efforts have 
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been made to derive bioheat equation using 
VAT [1,2,917]. Among them, Nakayama and 
Kuwahara [9] and Khaled and Vafai, [1] used 
VAT to derive a general set of bioheat transfer 
equations for blood flows and its surrounding 
biological tissues, considered as porous media. 

The detailed averaging theorems and 
associated averaging operations can be found in 
many literatures [8]. The main definitions and 
relations are highlighted as follows. The 
definition of volume average of transport 
quantities  in human medium k is  

dVX
V

k

V

k

o

k

o

 
1

 (6) 

where the variable oV refers to the representative 
element volume (REV) of region of interest 
(ROI). The variable ),,,( tzyxX k is a medium 
existing function, being equal to unity in 
medium k and zero otherwise. For example, if 
one considers the tissue regions have 2 media, 
say vascular region or extravascular region (k=v 
and ve), one can imagines that there are two 
transport variables vk  and vek  . Within the 
control volume, the contribution of 
extravascular medium at the special position to 
the averaged value of the transport variable of 
the vascular medium vk  is none. 
Mathematically ),,,( **** tzyxX vk  is zero at 
the specified spatial position ),,( *** zyx . 
Rigorously speaking, the medium existing 
function varies with time, since the lived human 
biological systems always changed with the 
environment. Even for a stationary patient who 
is lying or sitting still during a therapy, a 
patient‟s internal biological and physiological 
system may also be changed dynamically. The 
temperature variations of patient body or region 
of interest can cause the volumes of patient 
vessels expend or shrink, which indirectly 
influences the imposed existing function. 
However, in many common situations, such 
changes may be considered negligibly small for 
case study. 

The intrinsic volume average is defined as 

the volume averaged transport quantity within a 

specified medium k . It is mathematically given 

as  
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The variable kV refers to the volume occupied by 
the specified medium k . Each human medium 
occupies a single spatial location with the respect of 
time varying. The intrinsic volume averaged 
transport variable represents the quantity averaged 
over the all selected medium; but ignoring the 
percentage of the medium space to the total 
volume within the observed control unit. In 
order to account for the appearance of the 
medium occupying the volume space, a 
superficial quantity is introduced in the volume 
averaging technique. Therefore, the superficial 
volume averaged transport quality  k can be 
defined in the following. The definition gives 
the relationships to intrinsic counterpart

k
k  through a volume fraction (spatial 

occupation percentile) k , ok VV / .  
k

kkk    

If one identifies a tissue rerest into N sub-regions 

composited of human entities (such as vascular 

region and extravascular region, or blood vessels, 

cells, interstitium), the medium index k can be 

(k=1,2,3, …N). The accumulated volume occupied 

by all the media should be identical to the 

representative elementary volume oV . That is  





N

k

ko VV
,...3,2,1

 or 1
,...3,2,1




N

k

k  (9) 

Each medium‟s occupation over the 
representative elementary volume varies from 
position to position and from time to time. In 
general, the fraction is a dynamic variable which 
means it is a function of time. For example, 
tumor tissues evolutionarily grow or shrink at a 
relatively large time scale. In other words, 
theoretically, the occupations and medium 
distributions are dynamically changed over 
spatial and temporal spaces. Therefore, the 
occupation volume fraction is dependent of time 
and position (x, y, z). For a single patient, the 
value at specified time and position usually 
takes a different value. In most of case studies, 
the dependence of the fraction upon the time 

148



change is neglected. The value at different 
biological position of a human can be 
dynamically monitored and obtained by using 
imaging modalities for example MRI. For 
internal tissue architecture comparisons, image 
registration is sometime necessary to align the 
image position for biological and anatomic 
studies. 

For each visit case study of individual patent, 
the occupation volume fraction of human 
medium can be considered as constant value 
based on each individual‟s anatomic, biological 
and physiological systems. For modeling and 
simulating a therapeutic process, the occupation 
volume fraction becomes a dynamic parameter.  

The difference between transport quantity 

and its volume averaged one is the spatial 

deviation [8,9], defined as  

k

k

kkk X)( 


  

Based on the above definition, the volume averaged 

variable of the product of two transport quantities 

yields  
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The last term accounts for the dispersion effect 
due to volume averaging. Based on the volume 
averaging theorems, one has the following temporal 
derivative relationship 
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One has 

0
1
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Similarly, for spatial derivatives relationship, 
one can derive 
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Comparing the above equation with Equation, 

one has 
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Adding the above two together, it yields 
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This relationship holds any arbitrary variables 

and constant. Therefore, one sets 1k , it 

yields 
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If there is no interface movement, 0kw


,

0
1

 dAnw
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, then

t

k




=0. That means 

the volume fraction is independent of time.  

k
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If ,0
1

 dn
V

kA
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 then 0 k . 

The means the volume fraction is 
unchangeable with respect of spatial gradients. 
The value of k remains constant. 

The topology of accumulated interfacial area 
(or boundaries between medium k and other 
media) gives the value of total derivative of 
occupation volume fraction by the medium k 
within the representative element volume (REV). 
It links the volume changes to its averaged 
interfacial boundary surrounding the medium. It 
should be noted that the medium can be either 
concentrated or distributed within the REV. 

The topological variable becomes very an 
important physical and physiological parameter 
in evaluating cancer response and in deigning 
proper oncological treatments. It also links the 
microscopic geometric information from 
imaging modalities to macroscopic transports. 
Once we measured the interfacial area 
concentration, we can calculate the volume 
fraction.  
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VIII. MACROSCOPIC BIOTRANSPORT 
EQUATIONS 

 

After taking the integration over the 
representative elementary volume and utilized 
volume averaging techniques and theorems, the 
macroscopic conservation equations to form a 
general macroscopic biotransport model can be 
expressed and listed in Table 2. 
Mass conservation:

 (24)
 

k is the total interfacial average mass 
transfer or exchange among media due to 
volume averaging. kM


is the total interfacial 

momentum transfer due to interaction of stresses 
at the interface and any possible interface 
(boundary between two media) movement. kQ


is 

the total interfacial energy exchange due to heat 
transfer at the interface, and due to free-energy 
difference between participating media (such 
phase change). In bioheat model, this term is 
dominated by blood heat exchange between 
vessels (arteries or veins) and extravascular 
medium within the targeted tissue. It takes the 
consideration of local thermal non-equilibrium 
efforts. kiJ ,


is the total interfacial mass 

concentration exchanges due to mass transfer at 
the interface, and due to interfacial movement 
and phase change. It accounts for the local mass 
non-equilibrium effects. The mass concentration, 
and hold multiple equations based on 
participating mass concentrations. The subscript 
i indexes one of participating mass 
concentration of compositions. k

kb 


, 
kq

kS  , and 
kj

kiS  , are imposed volumetric 
forces, volumetric energy sources (heating 
generation or cooling sources), and volumetric 
mass sources for the i composition. These 
conservation equations form a general 
biotransport model. Theoretical speaking, a 
large number of problems requires solve these 
set of equations concurrently, since transfers of 
mass, momentum, and energy, and mass 
compositions are coupled together in most of 
biological systems. However, in many special 
cases, people can simply the problem by 
decouple these conservation equations and solve 
selected ones based on the physical dominations 
on the targeted biological systems. For example, 
people can provide reasonable assumptions such 
as there is no movement of components or 
media in the tissue, and time scale during 
medical treatment is very small, and biological 
objects (patient, human body, specified organs 

of tissue) under investigation are stationary. 
This way, one can only focus on temperature 
distribution and heat flux using bioheat model. 

The modeling of macroscopic fluxes and 
interfacial balances and international transfer 
terms can be found in the second portion of this 
research presented in [18]. 
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Table 2. Summary of Microscopic and Macroscopic Conservation Equations 
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